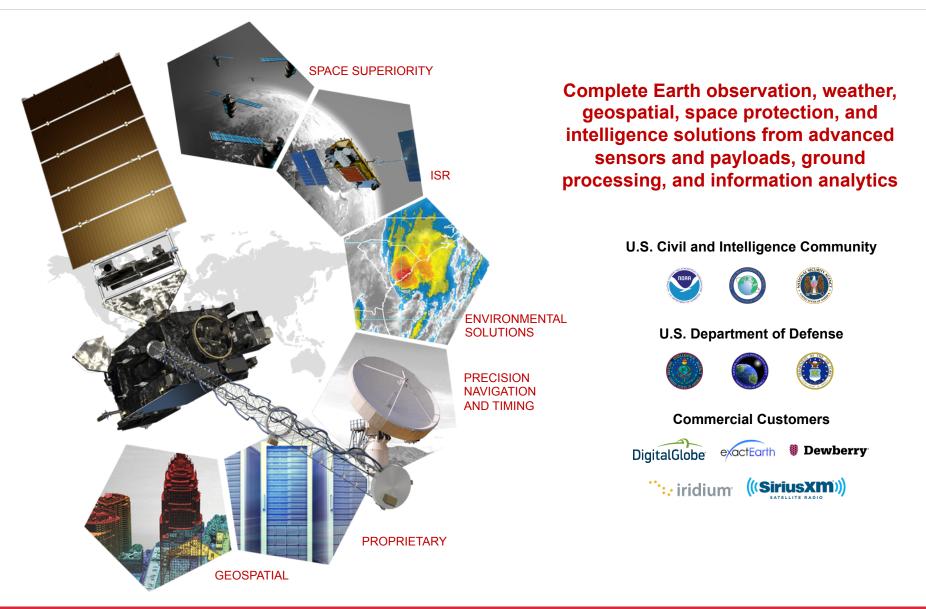


City Scale Carbon Monitoring in Paris: Implications for COP21 and Beyond


Anne Connor

Manager, Domestic and International Government Advocacy

Space and Intelligence Systems

Providing Sensors to Information

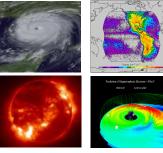
Environmental Sensors (Space and Ground)

Advanced Baseline Imager (ABI)

Cross-track Infrared Sounder (CrIS)

TANSO FTS GOSAT-2

Multi-Functional Fiber Laser LiDAR



GreenLITE

Ground Processing

WxConnect[™] **Direct Receive Systems**

IntelliEarth Sensor **Processing Engine**

IntelliEarth Mission Management

Application & Analytics

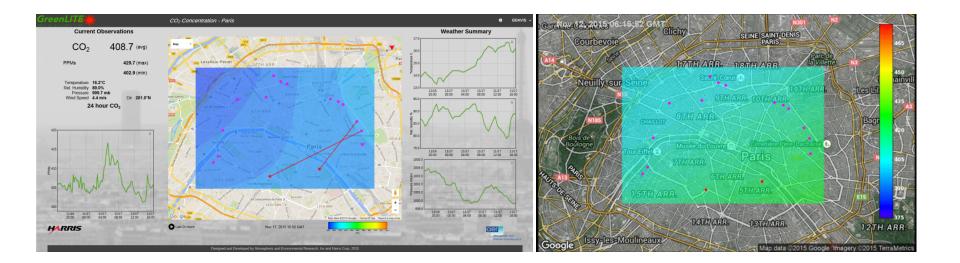
Forecasting & Distribution Infrastructure

Weather Data Service

Helios Hyperlocal Weather

GreenLITE **Data Service**

Global Context – Local Impacts


- Paris Agreement
 - 171 Countries signed on April 22 Historic Agreement
 - Key Relevant Themes:
 - Transparency
 - Measurement, Reporting, and Verification (MRV)
- Role of international partnerships to develop integrated measurement system
 - Multiple international projects on orbit or in development
 - Layer with airborne and ground-based systems
 - Current baseline is IPCC inventory reporting system
- Role of Cities in Global Context
 - Decision support services that enable better use of limited resources
- Role of technology to inform policy
 - Integrated picture from global to ground (similar to weather – airborne, ground, space)
 - Deploy resources where most needed

Ongoing GreenLITE Demonstration in Paris

- System monitoring CO2 in 30 km² of central Paris
 - Teamed with Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Atmospheric and Environmental Research (AER), EnviroEarth & LATMOS
 - Development funded by Harris, US DOE, US National Institute of Standards and Technology (NIST)

Planned Operation Nov 2015 thru 2016

GreenLITE Regional GHG Monitoring

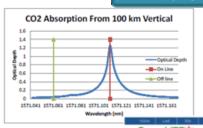
· Delivers a wide area GHG 'monitoring net'

- Autonomous operation
- Near real time information
- · Alerts, alarms & other analytics
- Spatial distribution information

High reliability low cost technology

- Open Path Laser Absorption Spectroscopy
- Telecommunication fiber optic components
- Horizontal measurements integrated into a 2-D map
- · Horizontal or vertical mapping possible

Complete end-to-end solution


- Sensors to data products
- Several GHGs (CO2, CH4, N2O, etc) single or multiple

Status

- Two operational systems built and tested
 - 1 km² and 30 km² regions
- Funded through DOE, NIST and Harris
- Methane integration underway

Wide Area Near Real Time Mapping of GHG Concentrations and Fluxes

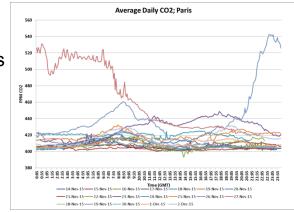
aer

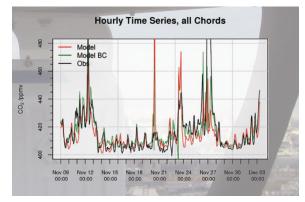
Atmospheric and

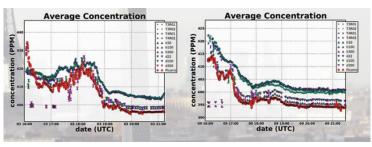
Environmental Research

Overview | 6

Initial Results and Next Steps




- System started collecting data on November 4, 2015
 - Collected over 700,000 raw samples within the first 2 months with over half passing quality control
 - Hourly average concentrations have ranged between 382 and 542 parts per million
 - Accuracy at least 1 part per million and likely better
- Visualizes Human Activity
 - Morning/evening commutes clearly seen
 - November and Early December saw higher concentrations; later in December those decrease
 - Specific event in November saw concentrations up to over 542 parts per million attributed to incineration plant and stalled wind pattern
- LSCE looking at seasonal data and research will continue throughout 2016
- Looking for expanded opportunities to verify/validate findings
 - Ongoing partnership with NIST
 - Developing collaboration with NOAA
 - Opportunities with NASA?


Many Potential Monitoring Applications

- Enable valuable new insights and analysis
 - Trending and analysis of hourly, daily, weekly & seasonal cycles
 - Correlation with natural and anthropogenic cycles
 - Internal/external influences
- City/Urban
 - Inventory validation and uncertainty reduction, identification
 of unaccounted for sources
 - Cycles of human activity (traffic, heating, etc)
 - Resilience investment planning and return analysis
- Commercial
 - Energy facilities; Methane storage, Coal mines, Oil/Gas Wells, Fracking sites, oil sands, tailings ponds
 - Industrial sites; Power Plants, Factories, Land fills
 - Agriculture; feed lots, farming processes
 - Carbon Sequestration sites
- Baseline and Monitor Natural Sources
 - Permafrost, volcanos, reservoirs, lakes/ponds, coastal waters, other CO2/CH4 sources

Anne Connor anne.connor@harris.com 571-203-7377

Technology to Connect, Inform and Protect [™]